metal-organic papers

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Chuan-Bi Li,* Wei Fang, En-Jie Dong, Bo Liu and Yan-Wei Li

Department of Chemistry, Jilin Normal University, Siping 136000, People's Republic of China

Correspondence e-mail: chuanbl@gmail.com

Key indicators

Single-crystal X-ray study T = 293 K Mean σ (C–C) = 0.008 Å R factor = 0.045 wR factor = 0.088 Data-to-parameter ratio = 13.3

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

catena-Poly[[[(dipyrido[3,2-a:2',3'-c]phenazine)zinc(II)]-µ-benzene-1,4-dicarboxylato] dipyrido-[3,2-a:2',3'-c]phenazine 0.67-solvate]

title $[Zn(C_8H_4O_4)(C_{18}H_{10}N_4)]_{3n}$. In the compound, $2nC_{18}H_{10}N_4$, the three distinct Zn^{II} atoms each exhibit a distorted cis-ZnN₂O₄ octahedral coordination geometry arising from an N,N-bidentate dipyrido[3,2-a:2,3'-c]phenazine (C₁₈H₁₀N₄; DPPZ) molecule and two O,O-bidentate 1,4-benzenedicarboxylate (C8H4O4; BDC) dianions. The crystallographically independent $[Zn(C_8H_4O_4)$ three $(C_{18}H_{10}N_4)]_n$ polymeric strands propagate in the [001] direction. Two uncoordinated DPPZ molecules complete the asymmetric unit. The structure is stabilized by $C-H \cdots O, C-H \cdots O$ H···N and π - π interactions.

Comment

Recently, polycyclic aromatic bidentate ligands such as 2,2bipyridyl (2,2-bipy) and 1,10-phenanthroline (1,10-phen) have been used in combination with polycarboxylates, leading to novel supramolecular architectures which are stabilized through π - π stacking interactions (Chen & Liu, 2002; Liu *et al.*, 2002). Based on the above synthesis strategy, we obtained the title compound, (I), using 1,4-benzenedicarboxylic acid (C₈H₆O₄; H₂BDC), the bidentate chelating ligand dipyrido[3,2-*a*:2,3'-*c*]phenazine (C₁₈H₁₀N₄; DPPZ), and Zn^{II} ion as starting materials.

© 2007 International Union of Crystallography All rights reserved Compound (I) (Fig. 1) is a one-dimensional metal-organic coordination polymer. There are three crystallographically

Received 24 November 2006

Accepted 4 December 2006

Figure 1

The asymmetric unit of (I), together with additional atoms to complete the Zn coordination, showing the atomic numbering scheme. Displacement ellipsoids are drawn at the 40% probability level. H atoms have been omitted for clarity. [Symmetry code: (i) $x, \frac{3}{2} - y, \frac{1}{2} + z$.]

distinct Zn^{II} ions, each of them showing the same coordination with a distorted octahedral geometry, arising from two N atoms of a DPPZ molecule and four O atoms from two bidentate BDC dianions. In addition, there are two uncoordinated DPPZ molecules in the asymmetric unit.

Each BDC ligand acts in a bidentate mode and bridges two Zn^{II} ions, resulting in $[Zn(BDC)(DPPZ)]_n$ chains, with the additional DPPZ molecules interleaved between them (Fig. 2). The average $Zn \cdots Zn \cdots Zn$ angle formed by three adjacent Zn^{II} ions is 126° for the three chains.

Various C-H···O and C-H···N interactions (Table 2) provide cohesion between adajcent polymeric chains. Close offset π - π stacking contacts are also apparent between free

Figure 2

A packing diagram for (I), showing the three polymeric chains (red, green and blue) and the uncoordinated DPPZ molecules (yellow and purple).

and coordinated DPPZ molecules, with face-to-face separations of 3.33 and 3.36 Å. In turn, these non-covalent interactions generate undulating layers and then a threedimensional supramolecular structure.

Experimental

The title compound was prepared from a mixture of $Zn(CH_3COO)_2 \cdot 2H_2O$ (0.1095 g), 1,4-benzenedicarboxylic acid (0.0517 g), dipyrido[3,2-*a*:2',3'-*c*]phenazine (0.0831 g) and H₂O (30 ml) in a 40 ml Teflon-lined autoclave under autogenous pressure at 443 K for 4 d. The pH was adjusted to 7.5 with NaOH. Upon cooling, yellow crystals of (I) were obtained.

Crystal data

$[Zn(C_8H_4O_4)(C_{18}H_{10}N_4)]_3$.	$V = 9062 (2) \text{ Å}^3$
$2C_{18}H_{10}N_4$	Z = 4
$M_r = 2099.95$	$D_x = 1.539 \text{ Mg m}^{-3}$
Monoclinic, $P2_1/c$	Mo $K\alpha$ radiation
a = 18.474 (2) Å	$\mu = 0.87 \text{ mm}^{-1}$
b = 28.718 (4) Å	T = 293 (2) K
c = 19.019 (2) Å	Block, yellow
$\beta = 116.092 \ (2)^{\circ}$	$0.20 \times 0.14 \times 0.11 \text{ mm}$
Data collection	
Bruker APEX CCD area-detector	50984 measured reflections
diffractometer	17865 independent reflections
ω scans	6083 reflections with $I > 2\sigma(I)$
Absorption correction: multi-scan	$R_{\rm int} = 0.090$
(SADABS; Bruker, 2002)	$\theta_{\rm max} = 26.1^{\circ}$
$T_{\min} = 0.861, \ T_{\max} = 0.910$	
Deference and	
Kejinemeni	
D (D)	TT

Refinement on F^2 H-atom parameters constrained $R[F^2 > 2\sigma(F^2)] = 0.045$ $w = 1/[\sigma^2(F_o^2) + (0.0159P)^2]$ $wR(F^2) = 0.088$ where $P = (F_o^2 + 2F_c^2)/3$ S = 0.71 $(\Delta/\sigma)_{max} = 0.002$ 17865 reflections $\Delta\rho_{max} = 0.56$ e Å⁻³1342 parameters $\Delta\rho_{min} = -0.31$ e Å⁻³

Table 1

Selected geometric	parameters	(A, '	°)	•
--------------------	------------	-------	----	---

Zn1-N1	2.121 (4)	Zn2-O5	2.294 (3)
Zn1-N2	2.130 (4)	Zn2-O8 ⁱ	2.024 (3)
Zn1-O1	2.098 (3)	$Zn2-O7^{i}$	2.304 (3)
Zn1-O2	2.176 (3)	Zn3-N18	2.123 (4)
Zn1-O3 ⁱ	2.044 (3)	Zn3-N17	2.118 (4)
Zn1-O4 ⁱ	2.260 (3)	Zn3-O11	2.049 (3)
Zn2-N8	2.125 (4)	Zn3-O12	2.225 (3)
Zn2-N7	2.121 (4)	Zn3-O10 ⁱ	2.114 (3)
Zn2-O6	2.037 (3)	Zn3-O9 ⁱ	2.164 (3)
Ω^{8i} – Zn2 – Ω^{6}	140 77 (11)	$\Omega 10^{i}$ – Zn3 – $\Omega 9^{i}$	61 63 (12)
$O8^{i}$ -Zn2-N7	103.00(12)	$N17 - Zn3 - O9^{i}$	93.89 (13)
O6-Zn2-N7	106.86 (12)	$N18-Zn3-O9^{i}$	95.29 (12)
$O8^i - Zn2 - N8$	106.44(12)	O11 - Zn3 - O12	61.15 (10)
O6-Zn2-N8	104.53 (12)	$O10^{i}$ -Zn3-O12	103.70 (12)
N7-Zn2-N8	77.21 (13)	N17-Zn3-O12	95.26 (13)
$O8^i - Zn2 - O5$	96.08 (11)	N18-Zn3-O12	159.91 (12)
O6-Zn2-O5	60.38 (10)	O9 ⁱ -Zn3-O12	103.96 (12)
N7-Zn2-O5	88.50 (14)	$O3^i - Zn1 - O1$	152.83 (14)
N8-Zn2-O5	155.46 (12)	O3 ⁱ -Zn1-N1	100.52 (12)
$O8^i - Zn2 - O7^i$	60.10 (11)	O1-Zn1-N1	98.78 (12)
$O6-Zn2-O7^{i}$	97.67 (11)	O3 ⁱ -Zn1-N2	102.06 (12)
$N7-Zn2-O7^{i}$	153.93 (13)	O1-Zn1-N2	100.73 (12)
N8-Zn2-O7 ⁱ	88.38 (14)	N1-Zn1-N2	77.18 (15)
O5-Zn2-O7 ⁱ	111.72 (11)	O3 ⁱ -Zn1-O2	98.85 (13)
C45-Zn2-C50 ⁱ	119.23 (13)	O1-Zn1-O2	61.95 (11)
O11-Zn3-O10 ⁱ	102.46 (13)	N1-Zn1-O2	90.52 (13)
O11-Zn3-N17	104.90 (13)	N2-Zn1-O2	157.32 (13)
O10 ⁱ -Zn3-N17	151.84 (13)	$O3^i - Zn1 - O4^i$	60.91 (10)
O11-Zn3-N18	102.19 (12)	O1-Zn1-O4 ⁱ	102.94 (11)
O10 ⁱ -Zn3-N18	90.35 (13)	N1-Zn1-O4 ⁱ	157.77 (11)
N17-Zn3-N18	77.54 (15)	N2-Zn1-O4 ⁱ	94.07 (13)
O11-Zn3-O9 ⁱ	156.60 (14)	$O2-Zn1-O4^{i}$	103.76 (13)

Symmetry code: (i) $x, -y + \frac{3}{2}, z + \frac{1}{2}$.

Table 2Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdots A$
$\overline{\text{C5}-\text{H5}B\cdots\text{O5}^{\text{ii}}}$	0.93	2.42	3.238 (6)	147
$C112-H11B\cdots O3^{m}$	0.93	2.31	2.993 (6)	130
$C26-H26A\cdots O11^{iv}$	0.93	2.42	3.003 (6)	120
$C48-H48A\cdots O12^{IV}$	0.93	2.51	3.340 (6)	149
$C52-H52A\cdots O4^{m}$	0.93	2.52	3.345 (6)	147
$C55 - H55A \cdots N15^{\circ}$	0.93	2.60	3.525 (8)	171
$C60 - H60A \cdots O1^{n}$	0.93	2.56	3.388 (6)	149
$C/2 - H/2A \cdots O9$	0.93	2.57	3.433 (0) 2.422 (7)	158
$C89-H89A\cdots O7^{viii}$	0.93	2.38	3.219 (7)	145

H atoms were positioned geometrically, with C-H = 0.93 Å, and refined with a riding model, with $U_{iso}(H) = 1.2U_{eq}(C)$.

Data collection: *SMART* (Bruker, 2002); cell refinement: *SAINT* (Bruker, 2002); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 1997); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *Mercury* (Macrae *et al.*, 2006); software used to prepare material for publication: *SHELXL97*.

This work was supported by Jilin Normal University Innovative Foundation (research grant No. 20050051006).

References

Bruker (2002). *SMART* (Version 5.611), *SAINT* (Version 6.0) and *SADABS* (Version 2.03). Bruker AXS Inc., Madison, Wisconsin, USA.

Chen, X. M. & Liu, G. F. (2002). Chem. Eur. J. 8, 4811-4817.

Liu, G. F., Ye, B. H., Ling, Y. H. & Chen, X. M. (2002). Chem. Commun. pp. 1442–1443.

Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. **39**, 453–457.

Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.